// ---------------------------------------------------------------------- // "THE BEER-WARE LICENSE" (Revision 42): // wrote this file. As long as you retain this // notice you can do whatever you want with this stuff. If we meet // some day, and you think this stuff is worth it, you can buy me a // beer in return Yasunori Osana at University of the Ryukyus, // Japan. // ---------------------------------------------------------------------- // OpenFC project: an open FPGA accelerated cluster framework // // Modules in this file: // top: a top-level module for Xilinx KC705 board // ---------------------------------------------------------------------- `default_nettype none module top ( // Clock signals input wire CLK125P, CLK125N, CLK200P, CLK200N, input wire CLK156P, CLK156N, // PCIe signals input wire PCIE_RESET_N, PCIE_REFCLK_P, PCIE_REFCLK_N, input wire [7:0] PCIE_RXP, PCIE_RXN, output wire [7:0] PCIE_TXP, PCIE_TXN, // SerDes channels: SMA and SFP output wire SMA_TXP, SMA_TXN, input wire SMA_RXP, SMA_RXN, output wire SFP_TXP, SFP_TXN, input wire SFP_RXP, SFP_RXN, // State LEDs output wire [7:0] LED ); // ------------------------------------------------------------ // Clock managers wire CLK50, CLK100, CLK200, GTREFCLK156; wire DCM_LOCKED; kc705_clk cm ( .CLK200P(CLK200P), .CLK200N(CLK200N), // I .CLK156P(CLK156P), .CLK156N(CLK156N), // I .CLK50(CLK50), .CLK100(CLK100), .CLK200(CLK200), // O .GTREFCLK156(GTREFCLK156), // O .DCM_LOCKED(DCM_LOCKED) // O ); // ------------------------------------------------------------ // PCIe interface wire CLK, RST; wire [1:0] PCI_D_BP, PCI_Q_BP; wire [1:0] PCI_D_VALID, PCI_Q_VALID; wire [127:0] PCI_D, PCI_Q; pcie_port pci ( .PCIE_RESET_N(PCIE_RESET_N), .PCIE_REFCLK_P(PCIE_REFCLK_P), .PCIE_REFCLK_N(PCIE_REFCLK_N), .PCIE_RXP(PCIE_RXP), .PCIE_RXN(PCIE_RXN), .PCIE_TXP(PCIE_TXP), .PCIE_TXN(PCIE_TXN), .CLK_OUT(CLK), .RST_OUT(RST), .D(PCI_D), .D_BP(PCI_D_BP), .D_VALID(PCI_D_VALID), // O .Q(PCI_Q), .Q_BP(PCI_Q_BP), .Q_VALID(PCI_Q_VALID) ); // I // ------------------------------------------------------------ // Aurora interface wire SMA_PE_RST, SFP_PE_RST; wire [1:0] CH_UP; wire [127:0] GT_D, GT_Q; wire [1:0] GT_D_VALID, GT_Q_VALID, GT_D_BP, GT_Q_BP; aurora_dual au ( .CLK250(CLK), .SYS_RST(RST), .PE_RST({SMA_PE_RST, SFP_PE_RST}), .CLK50(CLK50), .CLK100(CLK100), .GTREFCLK156(GTREFCLK156), .DCM_LOCKED (DCM_LOCKED), .SMA_TXP(SMA_TXP), .SMA_TXN(SMA_TXN), .SMA_RXP(SMA_RXP), .SMA_RXN(SMA_RXN), .SFP_TXP(SFP_TXP), .SFP_TXN(SFP_TXN), .SFP_RXP(SFP_RXP), .SFP_RXN(SFP_RXN), .SMA_D (GT_D[63:0]), .SMA_Q(GT_Q[63:0]), .SMA_D_VALID(GT_D_VALID[0]), .SMA_D_BP(GT_D_BP[0]), .SMA_Q_VALID(GT_Q_VALID[0]), .SMA_Q_BP(GT_Q_BP[0]), .SFP_D (GT_D[127:64]), .SFP_Q(GT_Q[127:64]), .SFP_D_VALID(GT_D_VALID[1]), .SFP_D_BP(GT_D_BP[1]), .SFP_Q_VALID(GT_Q_VALID[1]), .SFP_Q_BP(GT_Q_BP[1]), .CH_UP(CH_UP) ); // ------------------------------------------------------------ // ICAP instance wire ICAP_PE_RST; wire [63:0] ICAP_D, ICAP_Q; wire ICAP_D_VALID, ICAP_Q_VALID, ICAP_D_BP, ICAP_Q_BP; wire ICAP_BUSY; pe_icap icap ( .CLK250(CLK), .CLK100(CLK100), .SYS_RST(RST), .PE_RST(ICAP_PE_RST), .D(ICAP_D), .D_VALID(ICAP_D_VALID), .D_BP(ICAP_D_BP), .Q(ICAP_Q), .Q_VALID(ICAP_Q_VALID), .Q_BP(ICAP_Q_BP), .BUSY(ICAP_BUSY) ); // ------------------------------------------------------------ // PE instance wire PE_RST; wire [127:0] PE_D, PE_Q; wire [1:0] PE_D_VALID, PE_Q_VALID, PE_D_BP, PE_Q_BP, PE_Q_VALIDi; pe pe ( .CLK(CLK), .SYS_RST(RST),.PE_RST (PE_RST), .D (PE_D[ 63: 0]), .D_VALID (PE_D_VALID [0]), .D_BP (PE_D_BP[0]), .Q (PE_Q[ 63: 0]), .Q_VALID (PE_Q_VALIDi[0]), .Q_BP (PE_Q_BP[0]), .D2(PE_D[127:64]), .D2_VALID(PE_D_VALID [1]), .D2_BP(PE_D_BP[1]), .Q2(PE_Q[127:64]), .Q2_VALID(PE_Q_VALIDi[1]), .Q2_BP(PE_Q_BP[1]) ); assign PE_Q_VALID = ICAP_BUSY ? 0 : PE_Q_VALIDi; // ------------------------------------------------------------ // Router instance // Port 6, 7 = PCIe // Port 4, 5 = SMA, SFP // Port 3 = ICAP // Port 1, 2 = PE wire [6:0] ROUTER_Q_SOF; defparam ro.NumPorts = 7; defparam ro.PassThrough = 7'b0000111; // Note: PE_ICAP requires PT! router ro ( .CLK(CLK), .RST(RST), .D ({PCI_D, GT_Q, ICAP_Q, PE_Q }), // I .D_VALID({PCI_D_VALID, GT_Q_VALID, ICAP_Q_VALID, PE_Q_VALID}), // I .D_BP ({PCI_D_BP, GT_Q_BP, ICAP_Q_BP, PE_Q_BP }), // O .Q ({PCI_Q, GT_D, ICAP_D, PE_D }), // O .Q_VALID({PCI_Q_VALID, GT_D_VALID, ICAP_D_VALID, PE_D_VALID}), // O .Q_BP ({PCI_Q_BP, GT_D_BP, ICAP_D_BP, PE_D_BP }), // I .Q_SOF (ROUTER_Q_SOF) ); // O: to generate PE_RST assign PE_RST = ROUTER_Q_SOF[0]; assign ICAP_PE_RST = ROUTER_Q_SOF[2]; assign SMA_PE_RST = 0; assign SFP_PE_RST = 0; // ------------------------------------------------------------ // State LEDs // 0: PCIe Clock 4: // 1: PCIe 0 5: // 2: PCIe 1 6: Aurora SMA // 3: 7: Aurora SFP wire [7:0] LED_LINK = { CH_UP[1:0], // Aurora 3'b0, // Not connected 3'b111 }; // PCIe is always up wire [7:0] LED_ACT = { GT_D_VALID[1] | GT_Q_VALID[1], GT_D_VALID[0] | GT_Q_VALID[0], 3'b0, // Not connected PCI_D_VALID[1] | PCI_Q_VALID[1], PCI_D_VALID[0] | PCI_Q_VALID[0], 1'b1 }; // PCIe clock generate genvar i; for (i=0; i<8; i=i+1) begin : led_gen link_act led ( .CLK(CLK), .RST(RST), .LED(LED[i]), .LINK(LED_LINK[i]), .ACT(LED_ACT[i])); end endgenerate endmodule // top `default_nettype wire